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A Susceptibility Locus for Migraine with Aura, on Chromosome 424
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Migraine is a complex neurovascular disorder with substantial evidence supporting a genetic contribution. Prior
attempts to localize susceptibility loci for common forms of migraine have not produced conclusive evidence of
linkage or association. To date, no genomewide screen for migraine has been published. We report results from a
genomewide screen of 50 multigenerational, clinically well-defined Finnish families showing intergenerational trans-
mission of migraine with aura (MA). The families were screened using 350 polymorphic microsatellite markers,
with an average intermarker distance of 11 ¢cM. Significant evidence of linkage was found between the MA phenotype
and marker D451647 on 4q24. Using parametric two-point linkage analysis and assuming a dominant mode of
inheritance, we found for this marker a maximum LOD score of 4.20 under locus homogeneity (P = .000006) or
locus heterogeneity (P = .000011). Multipoint parametric (HLOD = 4.45; P = .0000058) and nonparametric
(NPL,;, = 3.43; P = .0007) analyses support linkage in this region. Statistically significant linkage was not observed

in any other chromosomal region.

Introduction

Migraine (MIM 157300) is a highly prevalent primary
headache disorder, which affects ~10%-12% of the
white population (Henry et al. 1992; Rasmussen and
Olesen 1992; Stewart et al. 1992; O’Brien et al. 1994;
Hagen et al. 2000). It is more prevalent among women,
and, for both sexes, its prevalence peaks during middle
age and declines thereafter (Lipton et al. 1994, 2001).
The most common form of migraine is migraine without
aura (MO), which, according to the International Head-
ache Society’s (IHS) standardized guidelines, is charac-
terized by unilateral pulsating pain of moderate to severe
intensity, aggravated by physical activity and lasting 4
—72 h. The attacks are associated with nausea, vomiting,
photophobia, and phonophobia. Migraine with aura
(MA) shares the same headache qualities, but the head-
ache is usually preceded by aura—attacks of focal neu-
rological symptoms, usually visual, that develop grad-
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ually within 5-20 min and that persist for <60 min
(Headache Classification Committee of the International
Headache Society 1988). Approximately one-third of in-
dividuals with migraine experience both types of mi-
graine during their lifetimes.

Twin studies indicate that migraine has a significant
genetic component, with heritability estimates of
40%-65% (Honkasalo et al. 1995; Larsson et al. 1995;
Gervil et al. 1999b; Ulrich et al. 19995). Approximately
50% of migraine sufferers have an affected first-degree
relative (Bille 1997). However, the mode of transmission
of the disorder is not clear (Mochi et al. 1993; Russell
and Olesen 1993; Russell et al. 1995; Ulrich et al.
1999a). Several population-based family studies have
suggested that both genetic and environmental factors
are involved in migraine but that genetic factors are
more influential in MA than in MO (Russell and Olesen
1995; Ziegler et al. 1998; Gervil et al. 19994; Ulrich et
al. 19994, 1999b).

None of the numerous studies performed to date have
led to identification of a gene responsible for the more
common forms of migraine—that is, MO or MA—or
even to specification of their mode of transmission. Only
familial hemiplegic migraine (FHM1 [MIM 141500]),
a rare autosomal dominant subtype of migraine, has
had a gene identified for it, on 19p13 (Joutel et al. 1993;
Ophoff et al. 1996). Mutations in this gene, CACNATA
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Table 1

Families with Migraine Who Were Used for
Genomewide Screen

Category No. (Range)
Pedigree size:
One generation 5
Two generations 19
Three generations 24
Four generations 2
Total 50
Subjects:
Total 646
Total genotyped 430
Per-pedigree mean:
Total 13.0 (3-34)
Genotyped 8.6 (3-20)
Affected (with either MA or MO) 5.9 (3-17)

(MIM 601011), a brain-specific P/Q-type calcium-chan-
nel gene, account for only a small fraction of all patients
with migraine and for 50% of families with the FHM
subtype (Ducros et al. 2001). Interestingly, mutations
in this same gene also can cause either episodic ataxia
type 2 (EA-2 [MIM 108500]) or spinocerebellar ataxia
type 6 (SCA6 [MIM 183086]) (Ophoff et al. 1996; Jod-
ice et al. 1997); on the other hand, 20% of families with
FHM show linkage to 1q21-31 (FHM2 [MIM 602481),
providing evidence that FHM is heterogeneous (Ducros
et al. 1997; Gardner et al. 1997). Several studies have
suggested that the 19p13 CACNA1A locus may be in-
volved in nonhemiplegic migraine as well (May et al.
1995; Ophoff et al. 1997; Nyholt et al. 1998b; Terwindt
et al. 2001), although contradictory data also have been
reported (Hovatta et al. 1994; White et al. 2001).
Thus far, 1q has not been linked to either MA or
MO; on the other hand, Xq has been implicated in
typical familial migraine (MIM 300125) (Nyholt et al.
1998a, 2000; Oterino et al. 2001). In addition, a num-
ber of association studies have shown linkage between
various gene loci and either MA or MO (Pardo et al.
1995; Peroutka et al. 1997; Del Zompo et al. 1998;
Ogilvie et al. 1998; Kowa et al. 2000; Lea et al. 2000;
Tzourio et al. 2001). Unfortunately, most of these stud-
ies have remained single reports and await confirmatory
replication studies. No genomewide screens for suscep-
tibility loci for migraine have been published thus far.
Identification of genes and allelic variants predispos-
ing to common traits such as migraine has been com-
plicated by inconsistencies in clinical diagnosis, a var-
iable age at onset, an unknown mode of inheritance,
locus heterogeneity, and the poorly understood role of
environmental factors. However, the small number of
founders, along with environmental and cultural ho-
mogeneity, can potentially make the Finnish population
useful in genetic studies of complex diseases (de la Cha-
pelle 1993; Lander and Schork 1994; Peltonen et al.
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2000). This population, with well-established genea-
logical registries and well-kept population records, has
been used successfully in past genetic studies, and most
identified loci have been replicated also in mixed pop-
ulations, suggesting their general significance (Mahtani
etal. 1996; Kuokkanen et al. 1997; Hovatta et al. 1999;
Leppavuori et al. 1999; Pajukanta et al. 1999; Ekelund
et al. 2000; for a review, see Peltonen et al. 2000; Lai-
tinen et al. 2001). We report here the results of a ge-
nomewide screen of 50 Finnish families with MA, im-
plicating a susceptibility locus on 4q24.

Subjects and Methods

Study Design

The present study focuses on families ascertained for
MA. This restriction was imposed because data suggest
that the genetic component of MA may be stronger than
that of MO (Honkasalo et al. 1995; Russell et al. 1993;
Ulrich et al. 19994). Also, by mandating that an aura
be one of the symptoms, we diminish the risk that other
types of headache will be included. Several studies also
have indicated that MA and MO might be distinct dis-
orders (Russell et al. 1996, 2001). Genetic analysis was
performed only on individuals who gave their informed
consent to the study. The ethics committees of the Hel-
sinki University Central Hospital and the University of
California, Los Angeles, approved the study protocol.

Consecutively identified families with at least three
first-degree family members affected with MA were con-
sidered for the study. The families were recruited on the
basis of patients attending headache clinics in three Finn-
ish cities (Helsinki, Kemi, and Jyviskyld). Three neu-
rologists (M.K., H.H., and M.I.) were in charge of the
recruitment. Once a member of the family, the index
case, had been clinically diagnosed, by a neurologist, as
suffering from migraine, the index case was asked to
contact all other members of the family who were be-
lieved to suffer from migraine and to ask if they would
be willing to participate in the study. If at least three
possible migraine sufferers were willing to participate,
the validated Finnish Migraine Specific Questionnaire
for Family Studies (FMSQy) (Kallela et al. 2001) was
mailed to each of them, to their parents, and to their
siblings. The FMSQ,, has been shown to be both specific
and sensitive in both diagnosing MA and MO in a family
setting (Kallela et al. 2001) and differentiating MA from
MO. From among the first 300 participating families,
50 independent, multigenerational families including a
total 646 family members were selected for genotyping.
These families were chosen because they displayed a
seemingly autosomal dominant mode of inheritance,
with the MA phenotype passed from one generation to
the next. In rare cases, an unaffected individual (i.e., a
subject without MA) had affected offspring; this suggests
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Table 2
Diagnosis of 430 Genotyped Subjects with
Migraine
Diagnosis (IHS No. of
Classification) Subjects
MA (1.27) 252
MO (1.1) 53
HA 10
NoHA 91
DU 24

* Includes EQV (IHS classification 1.2.5), in 6
subjects.

that there is reduced penetrance for the disease gene or
that phenocopies may exist. In several instances, there
appeared to have been assorted mating within the ped-
igrees—that is, an offspring was the result of mating
between an individual with the common MA phenotype
and an individual who either (a) displayed either the
MA or MO phenotype or (b) came from a family with
a history of either MA or MO. In these instances, the
spouse and his or her offspring were excluded from the
genetic analysis. In addition to completing the FMSQy,
the participants were asked to provide a sample of their
blood, for genotyping; blood samples were received from
430 individuals.

Diagnoses

Clinical data were available on 646 individuals (368
women and 278 men), including 246 individuals (174
women and 72 men) with MA and 53 individuals (36
women and 17 men) with MO. Table 1 describes the
family sample used in our genomewide screen. Diag-
noses of all index cases and family members were made
according to the IHS criteria (Headache Classification
Committee of the International Headache Society 1988),
on the basis of the FMSQ, (Kallela et al. 2001). Table
2 describes the diagnosis of the 430 individuals from
whom a blood sample was available for genotyping. Ta-
ble 3 describes the clinical characteristics of headache,
and table 4 describes the aura symptoms in the 246
subjects with MA. Families with FHM (IHS classifica-
tion 1.2.3) were not included in our study.

Genotyping

Linkage analysis was conducted for the 22 autosomes
and the X chromosome. In all, 350 polymorphic micro-
satellite markers were genotyped in the 430 subjects from
the 50 families that provided blood. The markers were
from The Human MapPairs Genome-Wide Screening Set
(LI-COR). This compilation is the ninth version of the
Weber-lab screening set (Broman et al. 1998), with a few
modifications. The order and distances between the mark-
ers were determined on the basis of the genome database
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of the Center for Medical Genetics, Marshfield Medical
Research Foundation. The markers are approximately
evenly spaced throughout the genome, with an average
of 11 cM between loci. The markers that failed to ge-
notype well were replaced by microsatellite markers from
The Genome Database and from the Marshfield genome
database. Genomic DNA was extracted from peripheral
blood samples, by standard techniques. DNA was am-
plified by multiplex PCR assays with fluorescent primers
designed to detect the microsatellite loci. Pipetting of the
reactions was performed by a Hydra Microdispenser
(Robbins Scientific). The amplification reactions were run
in microtiter 96-well plates, by Tetrad thermal cyclers (M]
Research). The resulting PCR fragments, along with a
size-standard ladder and fragments from known control
individuals from Fondation Jean Dausset CEPH, were
separated on 6% acrylamide gels by electrophoresis using
a LI-COR DNA 4200 Genetic Analyzer (LI-COR). The
bands on the gels were automatically interpreted into ge-
notypes by the Sagal.0 software package (University of
Washington and LI-COR). Saga takes digital gel images,
tracks the lanes, and calls the alleles on the basis of a
combination of size, peak shape, and marker character-
istics (e.g., di-, tri-, or tetranucleotide repeat). Allele sizes
were standardized to those of CEPH control individuals.
All genotypes were verified by human inspection. The
PedCheck1.1 (O’Connell and Weeks 1998) and Sim-
Walk2 2.82 (Sobel and Lange 1996) computer programs
were used to detect genotyping errors. If the mistyping
was not resolved by review of the gel images, the suspected
genotypes were set to be unknown.

Linkage Analyses

All analyses were performed with the disease-gene fre-
quency set at 0.001, under the assumption of autosomal
dominant inheritance and a phenocopy rate of 2.4%

Table 3
Clinical Characteristics of Headache
Proportion
of Subjects
Symptom (%)
Unilateral headache 76
Pulsating headache 75
Headache intensity:
Unbearable 39
Severe 42
Moderate 17
Mild 2
Aggravated by physical activity 76
Associated symptoms:
Nausea 85
Vomiting 57
Photophobia 87
Phonophobia 79
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Table 4
Aura Symptoms in 246 Subjects with
MA

Proportion

of Subjects
Type of Aura (%)
Any visual aura 94
Hemianopia 40
Scintillating scotoma 56
Photopsia 49
Blurring of vision 43
Any sensory aura 36
Any motor aura 14
Speech disturbance 29

(Hovatta et al. 1994). Allele frequencies were calculated
from the genotypes of all individuals genotyped in the
analysis. Initially, subjects with MA (IHS classification
1.2), with the exception of the subjects with migraine
aura without headache (EQV [IHS classification 1.2.5]),
were classified as affected. All other subjects, with MO
(IHS classification 1.1), headache other than migraine
(HA), no headache (NoHA), or diagnosis unavailable
(DU), were classified as unknown. Their genotypes are
useful in the reconstruction of missing parental geno-
types and phase information. The initial linkage analysis
was performed by means of a two-point approach—that
is, by using a single marker and the trait. Additionally,
two-point linkage analyses were also performed with a
broader phenotype, in which both individuals with MA
and individuals with MO were considered to be affected.
Two-point analysis is known to be less sensitive to map
and genotyping errors than are multipoint methods
(Risch and Giuffra 1992). Two-point parametric linkage
analysis was performed both under locus homogeneity
and under locus heterogeneity, by the LINKAGE (La-
throp and Lalouel 1984) and HOMOG (Ott 1983) com-
puter programs. To investigate the possibility that a pu-
tative migraine gene may act in a recessive fashion, we
employed an affected-sib-pair (ASP) analysis. The iden-
tity-by-descent (IBD) status of each ASP was estimated
by the SIBPAIR program. Within the ASP analysis, we
anticipate that some power is lost because pedigrees have
been split into nuclear families, which have been ana-
lyzed as though they had been ascertained indepen-
dently; however, this is not expected to bias the linkage
results in any manner (Goring and Terwilliger 20005).
The program ANALYZE (Goring and Terwilliger
2000a) was used to conduct these analyses.

For regions showing evidence of linkage in the para-
metric two-point analysis, multipoint parametric and
nonparametric analyses were performed by the GENE-
HUNTER program, version 2.1_r2beta (Kruglyak et al.
1996). Parametric linkage analysis was performed using
the model presented above, while allowing for locus het-
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erogeneity. The nonparametric statistic, NPL_,, which
estimates the statistical significance of alleles shared IBD
between all affected family members, was calculated
also, together with an estimated P value.

P values for LOD scores detected under homogeneity
were estimated according to the method proposed by
Nyholt (2000); P values for LOD scores detected under
heterogeneity were estimated according to the method
proposed by Chiano and Yates (1995). To aid in the
interpretation of linkage results, the thresholds were set
according to the recommendation made by Lander and
Kruglyak (1995). For LOD scores detected under ho-
mogeneity, the thresholds are as follows: a pointwise
threshold of P = .000049 (which is equivalent to a LOD
score of 3.3), for significant linkage; a pointwise thresh-
old of P = .0017 (LOD score 1.9), for suggestive link-
age, and a pointwise threshold of P = .05 (LOD score
0.59), for nominal linkage.

Results

Parametric and Nonparametric Two-Point Linkage
Analyses

Parametric and nonparametric LOD scores were cal-
culated using an affecteds-only strategy, for 350 markers.
Initially, family members with MA (IHS classification
1.2.1) were classified as affected, and all others were clas-
sified as unknown (see the “Subjects and Methods” sec-
tion); all results based on this phenotype classification are
presented first. For parametric analyses, a dominant mode
of inheritance and locus heterogeneity were employed.
Plots of the two-point parametric LOD scores for each
chromosome in the genomewide screen are shown in fig-
ure 1. In the genome screen, marker D4S1647 gave the
high-
est LOD score, 4.20 (under homogeneity, P = .000006;
under heterogeneity, P = .000011), at a recombination
fraction () of 0.18. This marker also gave an ASP LOD
score of 2.25 (P = .0064) (table 5). Marker D452380,
~4 c¢M proximal to marker D451647, had a two-point
maximum LOD score of 2.26 (under heterogeneity;
6 = 0.08and P = .0011), and an ASP LOD score of 1.30
(P = .0073). Marker D453240, ~9 c¢cM distal to marker
D4S1647, had a two-point LOD score of 1.01 (under
heterogeneity; # = 0.16 and P = .023) and an ASP LOD
score of 0.63 (P = .041). Five other markers adjacent
to marker D4S1647, spanning a region of 59 cM
(D4S1517-D4S1520), showed two-point maximum
LOD scores from 1.01 (P = .023) to 1.89 (P = .0026).
Detailed results are presented in table 5.

Statistically significant or suggestive linkage was not
observed in any other chromosomal region. However,
nominal linkage with parametric two-point LOD scores
giving P values <.05 were found at 21 additional loci,
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Two-point parametric linkage analyses (dominant model allowing for heterogeneity) for the 350-marker genomewide screen of
50 families with migraine. Blackened squares denote the two-point LOD scores when only individuals suffering from MA were considered to
be affected; unblackened diamonds denote the two-point LOD scores for a broader phenotype, in which both individuals with MA and individuals
with MO were considered to be affected. Analyses were performed by the LINKAGE program, as described in the text.

in 1p, 1q, 3p, 5p, 59, 6q, 12p, 12q, 15q, 16p, 169, 17p,
18q, 19p, 22q, and Xp. These results are presented in
detail in table 5. Of these regions, two—1q and 19p—are
of specific interest because they previously have been
linked to either FHM (Joutel et al. 1993; Ducros et al.
1997; Gardner et al. 1997) or MA and MO (May et al.

1995; Ophoff et al. 1997; Nyholt et al. 1998b; Terwindt
et al. 2001). Therefore, results regarding these regions
are presented here in more detail. Also, results regarding
the X chromosome will be presented in more detail be-
cause several previous and recent studies have provided
evidence of linkage of the X chromosome to common
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Table 5
Locations and Two-Point LOD Scores for Markers with P < .05 in the Genomewide Screen
RESULTS UNDER RESULTS UNDER RESULTS OF
Locus HOMOGENEITY Locus HETEROGENEITY ASP ANALYSIS
PoOSITION® LOD HLOD LOD

MARKER (LOCATION) (cM) Score P 6° Score P 6°  Score P
D1S552 (1p36.13) 45 (.36) (.099) 28 1.08 .020 .00 (.00) (.50)
D1S3462 (1q42.2) 247 .70 .036 .30 1.66 .0046 .34 (.00) (.50)
D3S1259 (3p25.2) 37 .80 .026 .30 .82 .038 .26 71 .036
D3S3038 (3p24.3) 45 .82 .026 .30 .82 .038 .30 (.52) (.062)
D3S2409 (3p21.31) 71 .64 .043 .36 (.64) (.061) .36 (.13)  (.22)
D3S1766 (3p14.2) 79 77 .030 .30 77 .045 .00 (.12)  (.23)
DA4S1517 (4q13.3) 82 1.66 .0029 .26 1.66 .0046 26 1.02 .015
D4S3243 (4q) 88 1.01 .016 .26 1.01 .023 .26 (.17)  (.19)
DA4S2361 (49q21.23) 93 .61 .047 .30 (.68) (.055) 22 (.12)  (.23)
D4S52409 (4q22.1) 96 1.85 .0018 .20 1.89 .0026 .16 1.00 .016
D452380 101 1.75 .0023 22 2.26 .0011 .08 1.30 .0073
D4S51647 (4q24) 105 4.20 .000006 .18 4.20 .000011 .18 2.25 .0064
D4S3240 (4q25) 114 .76 .031 .30 1.01 .023 .16 .63 .041
D4S52394 (4q28.2) 130 .98 .017 28 1.05 .021 22 (.02)  (.38)
D4S1520 (4q31.1) 141 1.55 .0038 .20 1.55 .0061 .20 (.47) (.071)
D5S2845 (5p14.3) 36 .82 .026 .24 .81 .039 .24 (.36) (.10)
D5S2500 (5q12.1) 69 1.11 .012 .26 1.16 .016 .20 (.36) (.099)
D6S2436 (6q25.2) 155 .75 .032 .34 .75 .046 .34 .61 .047
D12S1042 (12p11.23) 49 .94 .019 .32 .94 .028 .32 (.35) (.10)
D12S1064 (12q21.33) 95 (.42) (.082) .36 .74 .047 .00 (.00) (.50)
D15S659 (15q21.1) 43 (.05) (.32) 42 1.09 .019 .06 (.00) (.50)
D15S655 (15q25.3) 83 .70 .036 .24 1.38 .0092 .04 (.31)  (.12)
D16S753 (16p12.3) 58 (.004) (.45 .40 1.22 .014 .00 (.07)  (.29)
D16S539 (16q24.1) 125 .84 .025 .34 .84 .036 .34 (.00) (.5)
D175945 (17p13.1) 21 .96 .018 .30 1.01 .023 .24 .61 .047
D18S877 (18q12.1) 54 (.18) (.18) .40 1.00 .024 .00 (.08) (.27)
D19S427 (19p13.2) 21 1.70 .0026 22 1.70 .0042 22 (.08) (.27)
D22S683 (22q12.3) 36 (.41) (.085) .34 .82 .038 .08 (.44) (.077)
DXS§9896 (Xp) 31 1.08 .013 .30 1.08 .020 .30 (.13)  (.22)
DXS6810 (Xp11.4) 43 .65 .042 .34 (.65) (.060) .34 (.31)  (.12)

NOTE.—Results are based on analyses of individuals with MA; parentheses denote entries for which P> .035;
the significant P value (and the marker for it) is underlined, and the suggestive P value (and the marker for it) is

in boldface italic.

* Distance from pter, according to the map published by the Center for Medical Genetics, Marshfield Medical

Research Foundation.

b Values are those at which the maximum LOD score was found.

forms of migraine (Nyholt et al. 19984, 2000; Oterino
et al. 2001; Wieser et al. 2001).

Ten markers were genotyped on chromosome 19,
from 10 to 101 ¢cM (where pter is at 0 cM and qter is
at 105 cM). Marker D1951150, at a distance of ~38
cM, is an intragenic marker of CACNA1A and was in-
cluded in the screen. This marker showed no evidence
of linkage in our families (HLOD 0.00). However,
marker D19S427, located ~20 cM distal to marker
D19S51150, showed nominal evidence of linkage, with
a maximum LOD score of 1.70 (§ = 0.22; under ho-
mogeneity, P = .0026; under heterogeneity, P =
.0042).

Thirty-one markers were genotyped on chromosome
1, from 4 to 275 cM (where pter is at 0 cM and qter is
at 290 cM). Marker D1S3462, on 1q42 (at 247 cM),

and marker D1S522, on 1p36 (at 45 cM), showed nom-
inal evidence of linkage, with HLOD values of 1.66
(0 = 0.34; P = .0046) and 1.08 (§ = 0.00; P = .02),
respectively.

Fourteen markers were genotyped on the X chro-
mosome from 22 to 101 ¢cM (where pter is at 0 cM and
gter is at 103 cM); of these, marker DXS9896, at 31
cM, showed a two-point maximum LOD score of 1.08
(@ = 0.30; under homogeneity, P = .013; under hetero-
geneity, P = .02), with nominal evidence of linkage. No
evidence of linkage was observed on Xgq.

In addition, markers D14S1426 (at 126 cM),
D1751830 (at 117 cM), and D18S535 (at 64 cM) gave
LOD scores of 1.13 (P = .011), 1.44 (P = .005 ), and
1.41 (P = .005), respectively, in the nonparametric ASP
analysis.
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Figure 2 Multipoint parametric and nonparametric linkage
analyses of 4q, with markers D452409 (96 cM), D452380 (101 cM),
D4S1647 (105 ¢cM), and D4S3240 (114 cM). Analyses were performed
by the GENEHUNTER program, as described in the text. The vertical
axis presents both the parametric (i.e., HLOD [unbroken line]) and
nonparametric (i.e., NPL,, [dotted line]) values along a 20-cM region
of chromosome 4.

Parametric Three-Point Linkage Analysis

Parametric three-point linkage analysis—that is, anal-
ysis using two markers and the trait, on all pairs of
adjacent markers—was performed in the region from
marker D4S2409 (at 96 cM) to marker D453240 (at
114 c¢M). The maximum three-point HLOD, 3.68
(P = .0004), was observed with the D452380-D4S1647
pair, suggesting that the best evidence of linkage is ob-
tained in this 4-cM region.

Multipoint Analyses

To pool information from multiple markers and to
position the linked locus on 4q24, we performed para-
metric and nonparametric multipoint analyses, using the
GENEHUNTER program. The parametric test gave the
highest HLOD, 4.45 (P = .0000058), between markers
D452409 and D4S2380 (fig. 2). The estimated fraction
of linked pedigrees, o, at HLOD was 0.23-0.5. The re-
sults of the nonparametric analysis are consistent with
those of the parametric result, giving a maximum NPL_,
of 3.43 (P = .0007) at the same position (fig. 2).

Parametric Two-Point Linkage Analysis for a Broader
Phenotype

Two-point linkage analyses were also performed with
use of a broader phenotype, in which both individuals
with MA and individuals with MO were considered to
be affected. A plot of the two-point parametric LOD
scores (under heterogeneity) for each chromosome is
shown in figure 1. No significant linkage to any chro-
mosomal region was detected. Marker D451647 showed
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only suggestive evidence of linkage, with a LOD score
of 2.48 (6 = 0.22), both under homogeneity (P =
.00037) and under heterogeneity (P = .00064). Marker
D18S877, at 31 cM, also showed suggestive evidence of
linkage, with a two-point maximum LOD score of 2.32
(6 = 0.00; under heterogeneity, P = .00093).

Discussion

Our results, based on the genotyping of 50 Finnish fam-
ilies with MA, provide strong evidence of a novel mi-
graine-susceptibility locus on 4q24. Statistically signifi-
cant evidence of linkage, both under locus homogeneity
and under locus heterogeneity (LOD score 4.20; P =
.000006 and P = .000011, respectively), between the
common MA phenotype and marker D451647 was ob-
tained with a parametric two-point linkage analysis, un-
der a dominant mode of inheritance. Parametric and
nonparametric multipoint analyses supported linkage to
this chromosomal region. The multipoint analyses found
the highest HLOD scores, 4.45 (P = .0000058), and
NPL,, = 3.43 (P = .0007), in the region between mark-
ers D452409 and D4S2380, 7 c¢cM proximal of the
D451647 locus.

Our successful identification of linkage to 4q24 was
most probably due to the selection strategy used in our
study sample, which emphasized clustering in families
with a specific phenotype, MA. Additionally, to reduce
heterogeneity, a single neurologist carefully analyzed all
the clinical data. Only families with MA throughout the
pedigree were considered for further analysis. On the
basis of these carefully diagnosed families with predom-
inant MA, we were able to select reasonably large, mul-
tigenerational families for our linkage study. The im-
portance of careful family selection in linkage studies
of complex traits has recently, elegantly been demon-
strated by Brzustowicz et al. (2000), who were able to
locate, on 1g21-q22, a major susceptibility locus for
familial schizophrenia in 22 extended families with high
rates of schizophrenia. In genetically homogeneous pop-
ulations, such as the Finns, in which there are potentially
only a few affected founders, linkage analysis of com-
plex traits can be especially powerful, provided that the
clinical phenotype is properly dissected. Finland is not
the only country in which there is a genetically isolated
population appropriate for genetic studies, but the ad-
ditional features of well-kept population records and a
high-quality, state-run health-care system make it a very
reliable resource for the genetic studies of complex traits
(Peltonen et al. 2000).

The strength of analysis of a more stringently defined
migraine phenotype was reflected in the drop in the two-
point LOD scores for 4q when a broader disease clas-
sification was included, in which both individuals with
MA and individuals with MO were considered to be
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affected. Additionally, no other statistically significant
locus was detected for this combined phenotype. It is
likely that the increased heterogeneity and possible phe-
nocopies introduced into the etiology by inclusion of
the MO phenotypes are responsible for these differ-
ences. However, the current sample is not large enough
to allow us to investigate whether MA and MO are
genetically distinct entities.

To the best of our knowledge, no other report of a
statistically significant linkage of common MA pheno-
types to any autosomal region has been published. The
present study’s finding therefore suggests the existence
of a novel MA locus and must be tested in independent
studies. However, results of two other candidate-gene
studies have indicated that two possible loci on chro-
mosome 4 are associated with migraine. An association
study by Pardo et al. (1995), of 112 unrelated patients
with migraine (62 patients with MO and 50 patients
with MA), provided evidence that the group-component
locus (GC [MIM 139200]) on 4q12-13.3 is involved in
migraine. GC codes for a multifunctional protein found
in plasma, for example, where it carries the vitamin-D
sterols and prevents polymerization of actin by binding
its monomers. Tzourio et al. (2001) found an associa-
tion between migraine and a polymorphism at the en-
dothelin type A-receptor gene (ENDRA [MIM
131243]) on 4q31. Endothelin receptors mediate the
biological effects of endothelin (ET-1 [MIM 131240]),
a potential vasoconstrictor, which has been implicated
in migraine, by recent studies showing increased plasma
ET-1 levels during and between migraine attacks (Fark-
kila et al. 1992; Kallela et al. 1998; Hasselblatt et al.
1999). GC and ENDRA are good candidate genes for
our further studies, although they are located some dis-
tance from marker D451647 (GC is 30 Mb proximal,
and ENDRA is 50 Mb distal). The ~60-cM region
around our most informative marker, D451647, con-
tains =170 known genes, including several obvious can-
didate genes (UCSC Human Genome Project Working
Draft).

In addition to the significant finding with regard to 4q,
the present study has revealed 21 markers, on 12 different
chromosomes, that provide nominal evidence of linkage.
However, in light of the LOD scores for them, the risk
of false-positive signals is considerable. Nonetheless, of
special interest are regions on chromosomes 1q, 19p, and
X, where several earlier studies found evidence of linkage
or association with migraine. The CACNA1A locus on
19p13, which Joutel et al. (1993) reported as being linked
to FHM, has also been indicated as being involved in
nonhemiplegic migraine. May et al. (1995) studied how
CACNA1A markers are involved with migraine in 28
German families, and Terwindt et al. (2001) do so later
in 36 extended Dutch families. Both groups concluded
that the increased allele sharing around the CACNA1A
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gene on 19p13 is consistent with an important involve-
ment of this region in migraine, especially MA. Nyholt
et al. (1998b) reported significant cosegregation and al-
lele sharing for markers situated within or adjacent to
the CACNA1A locus in one of the four large Australian
families that they analyzed. On the other hand, our two-
point linkage analysis of Finnish families showed no ev-
idence of linkage of the MA phenotype to the intragenic
marker D1951150 of CACNA1A. This finding is in
agreement with our previous results excluding this region
as a site for a migraine locus in Finnish families with
migraine (Hovatta et al. 1994); however, two of the four
families in that previous study (Hovatta et al. 1994) also
were included in the present study. It should be stressed
that our data are from families collected from a geneti-
cally homogeneous population and that, when other eth-
nic groups are analyzed, locus heterogeneity is likely to
exist; however, we have found nominal linkage to marker
D195427 (LOD score 1.70; P = .0042), located in the
proximity of the insulin-receptor gene (INSR [MIM
147670]) that White et al. (2001) recently have associ-
ated with migraine. Both the findings by White et al.
(2001) and those of our group support the notion that
genes other than CACNA1A might contribute to the link-
age and association findings on 19p13. These regions
obviously require further study with other samples and,
possibly, with further phenotypic stratification.

We have found nominal evidence of linkage at marker
D1S3462 (LOD score 1.70; P = .0046) on 1g42. There
is no previous linkage evidence that would indicate that
this region is involved in migraine. One locus—or, pos-
sibly, two loci—for FHM have been mapped to 1g21-31
(Ducros et al. 1997; Gardner et al. 1997). Interestingly,
the 1q21-42 region harbors several ion-channel genes
that are possible candidates for both FHM and MA.

Our finding of nominal linkage to the X chromosome,
at marker DXS9896 (LOD score 1.08; P = .02) is note-
worthy, since several other studies have provided evi-
dence of linkage of the X chromosome to migraine.
Studies by Nyholt et al. (19984, 2000) have implicated
a locus on Xq24-28 in two Australian families with
migraine. Interestingly, Oterino et al. (2001) have sug-
gested the connexin 32 gene (G/B1 [MIM 304040]) on
Xq13 as a possible candidate for MA in a family with
both Chargot-Marie-Tooth disease (MIM 302800) and
MA. Furthermore, Wieser et al. (2001) have reported
80 families (from Spain, Germany, and the United
States) with migraine and possible X-linked dominant
inheritance, providing evidence of allele sharing and
linkage to the X chromosome. Further studies are nec-
essary to confirm the role of the X-chromosomal loci
in genetic predisposition to migraine.

In conclusion, the present study provides strong ev-
idence of an MA-susceptibility locus on 4q24. Further
studies are needed to delineate the role of the other



660

potential loci involved in MA in the families analyzed
in the present study. However, the statistically signifi-
cant evidence of the linkage to 4q24 should facilitate
efforts to identify an underlying migraine-susceptibility
gene. The detection of underlying mutation(s) will pro-
vide clues to the further elucidation of the complex mo-
lecular pathways of migraine and, finally, will help in
the development of rational treatment strategies.
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